FORMULATION OF THE TWO-DIMENSIONAL TRANSIENT
HEAT-CONDUCTION PROBLEM FOR THE BLADED DISK
OF A GAS TURBINE

E. E, Denisov and V. 8. Petrovskii UDC 536.244:621.438

A system of differential equations is derived for the transient heat conduction asso-
ciated with a cooled gas turbine disk equipped with shrouded blades on a shank.

The analysis of the solution of the two-dimensional transient heat-conduction problem makes it pos-
sible to decide the optimum conditions for the cooling of a turbine rotor. We consider a variable-profile
disk having a central orifice and equipped with variable-cross-section shrouded blades. It may be assumed
that the disk profile is bounded by parabolas (Fig. 1). Each blade has a shank in the root section. In formu-
lating the problem we take into account the variation of the gas temperature with the height of the cascade
as well as the heating of the coolant air. We also assume that the heat-transfer coefficient of the blade web
depends on the longitudinal coordinate and varies over the contour of the profile. We take the latter effect
into account by asserting that the heat-transfer coefficients involved in the boundary conditions at the fore
and aft edges of the blade web are determined by their own intrinsic local heat-transfer conditions, i.e.,
by critical relations, We assume, in addition, that the variation of the heat-transfer coefficient on the
lateral surface of the disk from the center to the periphery is described by an exponential function.

We account for the variation of the gas temperature with the height of the cascade on the basis of the
following considerations. The gas in cooled turbines has a maximum temperature roughly in the midsection
of the blade webh. It may be assumed, therefore, that the blade itself has the maximum temperature in this
location. Then the heat flux across the blade midsection is zero, and if we state the boundary condition at
this location, it should turn out to be fairly simple. Consequently, we can conditionally partition the entire
working portion of the blade into two approximately equal-length parts and formulate the problem for each
part separately. In this case the distribution of the gas temperature over the height of the cascade can be
described fairly simply and without significant error by means of an exponential function.

In the formulation of the two-dimensional heat-conduction problem the initial differential equation for
the blade is derived from the heat balance equation for an elementary part of the web of volume dV = d(x,
y)dxdy. As a result, in place of the function S(x) or S(y) (variation of the blade cross section with the x or y
coordinate) we have a single function 6(x, y) characterizing the blade dimensions in the initial equation.

On the whole, the transient heat-conduction problem for the disk and lower halves of the blades, ac-
cording to the scheme of Fig. 1, can be represented by a system of two equations:
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Fig. 1. Diagram relating to the formulation of the prob-
lem (o3, oy, @5, g, &y, and g are the heat-transfer
coefficients on the corresponding surfaces of the disk
and blade).

Here tgq =f(r, z, 7) and t, = {(x, y, 7).

In stating the problem for the upper halves of the blades we need only the second equation. We are
concerned here only with the root section of the blade.

For the disk the r coordinate coincides with the radial direction, and z with the axial direction. For
the blade the x coordinate coincides in direction with the r coordinate, but the y coordinate is measured
along the median of the blade cross section and has its own direction, which does not coincide with the z
coordinate, If we take the curvature of the median line into account, then over the entire length y forms a
variable angle with the z axis. For the simultaneous solution of Egs. (1) and (2) it is required to reduce
them to coordinate systems the planes -of which coincide. This operation can be performed as follows.
Figure 2 illustrates the position of the profile orientation of the blade mounted on the disk and the relative
position of the y and z axes. The projection of the coordinate system (x, y) onto the plane (r, z) with ob-
servance of the y-dependence of the angle ¢ complicates both the form of the initial blade equation and the
solution as a whole, It is therefore convenient to replace the angle ¢, which varies along the median line,
by a certain angle of inclination ¢j, which the axis of the rectified profile, inscribed within the limits of the
disk rim width, forms with the z axis (Fig. 2). The angle ¢, is not a gas~dynamic characteristic of the
cascade. It is a condifional quantity, depending only on the width of the disk rim and the length of the pro-
file along the median line at the base of the blade, i.e., at x = 0. This device does not incur a significant
error, because in Eq. (2), irrespective of the actual configuration, the y axis is assumed to be straight,
and we no longer include the curvature of the median line of the profile in the actual initial equation. What-
ever small error does occur is caused only by the difference in the actual distances from the fore edge to
the aft edge on the concave and convex sides of the blade. It is important to note that the replacement of
the true profile by its conditional counterpart (Fig. 2) in the formulation of the problem is unrelated to the
angles of entry 54 and exit 8, of the gas flow. It is purely of a formal character. Consequently, the initial
equations (1) and (2) and the boundary conditions formulated below are applicable fo cascades having blades
of any profile. The influence, on the other hand, of the angles g, and $, and the shape of the blade profile
on the heat transfer and, hence, on the temperature field of the blades is taken into account by the critical
relations used to calculate the heat-transfer coefficients.

The introduction of the angle ¢ in the heat-conduction differential equation somewhat aiters the form
of the latter. We replace y in Eq. (2) by z. According to the scheme of Fig. 2 z = y cos ¢. It follows,
therefore, that if ¢ = const, Eq. (2) must be written in the form
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Fig. 2. Illustration of the
technique for bringing the
plane of the blade (x, y) in-
to coincidence with the co-
ordinate plane of the disk
r, z).
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Upon rotation of the coordinate plane of the blade into aligiment with the plane (r, z) we do not take
into account the geometric twist of the blade, i.e., the dependence of ¢ on x. What is important for the
heat-conduction process in the blade and in the disk is the matching of the temperature fields at the junc-
tion of the blade with the disk. The variation of the position of the profile of the blade cross section as a
function of the x coordinate no longer affects the form of the initial equation or the final result. In other
words, the important consideration for the initial equation (2) is its matching with Eq. (1), and it is im~
material how the y axis is rotated for different cross sections of the blade. It is unnecessary, therefore,
to take the geometric twist into account in the initial equation.

The series of functions entering into the initial system of differential equations (1) and (2) has the

form
oty (1) = A, — By, (4)
65, 4)={(y — ks exp [— (b, + ks) ] + ka} 4, )
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The function 0(x, y) is determined for the working blades of a parficular turbine, but its form can be
the same for the blades of other turbines. Only the values of the constant coefficients change,

Upon transition from the y to the z coordinate Eq, (5) acquires the somewhat different form
8(x, y)={{ky—hsx)exp [— (k, + kyx) 2 cos Q] + k) zeos . (7

We now formulate the boundary conditions for the initial equations (1) and ). The disk is cooled
along the lateral surfaces and inside the central orifice, so that the bhoundary conditions for it are as fol-

lows:

at r =ry:
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Fig. 3. Diagram relating to the formulation of the
heat-balance equations at the junction of a blade
with the disk.

at z = f;(r):

ot ‘
——4 = O‘;\g') [td_' ta-z (f)] (1)

In Egs. (8)-(11)

o (1) =01, (r)= e (r) =g (ry) etaetr—r (12)
represents the dependence of the heat-transfer coefficients at the fore and aft ilateral surfaces on the
radius;

f1(n)=20 — ki (r — 1), (13)
Fo ) = 20 + By (r — rof? 1)
are functions delimiting the disk profile.
In the latter functions

ro= [8 -+ bug (12— 13)] ] 2hyy (ry — ), (15)
Zgy=hyy (ry —rol? and zp,=8; — z,,. (16)

Also .
L (N=ta(r) + ki (r—13), (17)
ba (N=ba(r) + i —r) (18)

are functions describing the variation of the air temperature during motion along the lateral surface of the
disk from the center toward the periphery. Here

tay (ro) =ta (ra)=ta(rs). (19)
The boundary condition (9) is obtained by solving the heat-balance equation for unit time:
dQ1:dQ2 + an, (20)
where
(0, z, T)—ta(ry, 2, T
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is the heat delivered from the blades to the disk through an elementary cross section of the shank of each
blade (Fig. 3);
dQ,=ay [td (ry 2, ) —fa (rl)'] bindz

is the heat delivered from an elementary outer surface of the rim of dimension bjdz by the coolant air in-
jected through the duct in the lower part of the blades (t; (ry) = 0.5[ta; (ry) + tay(ry)]);

Of (ry, 2, T
dQ=—Ag _d(_lrj_ p2ar,dz

is the heat transported to the disk from the periphery through the annular surface.

Performing a substitution and transformation, we deduce Eq. (9) from (20), where
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On the left-hand sides of the boundary conditions (10) and (11) the temperature gradient is expressed
as the derivative of t with respect to the normal to the lateral surface of the disk. This is reasonable, since
we specify the condition on an arbitrarily oriented boundary of the disk cross section relative to the coordi-
nate system. The transition from Btd/ on to atd/ 9z in the course of solution of the problem can be realized
on the basis of the relation

oty ofg 1

e T (22)
For the lower part of the blade in contact with the disk the boundary conditions are as follows:
atx =0, r =ry
Do _ o+ 23)
ox oty + Citp—C;
atx =1:
o O
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In Eqs. (23)-(26), a3(%, 0) and a4(%, b) are the heat-transfer coefficients at the fore and aft edges.
By the condition of the problem «y does not depend on y, but for the entire surface along the concave and
convex sides of the blade it will have one value, while for the fore and aft edges of the blade it will have
different values, in accordance with the recommendations of [2].
*

g
The boundary condition (23) is obtained from the heat-balance equation written for the cross section
coinciding with the coordinate x = 0 (Fig. 3):

The function t_ has been displayed above [Eg. (6)].

dQ, = dQ; + dQs. (27)

Here

Ofp
dQ,=Mp v n8(0, 2 dz
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is the heat admitted from an element of the working part of the blade of cross section 6(0, z)dz to its shank
per unit time;

£.(0, z, T)—1t,(ry, 2, T)
dQs’:?\zb b( ) P d( - ﬂast

is the heat delivered from the cross section x = 0 to the blade shank through the area 64dz;

000, 2 D —tqlry 2, )
dQ, =20z [zb(o, AL . a2 ) ——-ta(rl)] nhdz

is the heat delivered by the coolant air from the lateral surfaces of the shank.

We obtain Eq. (23) by substituting dQ,, dQ;, and dQ, into it and instituting the appropriate trans-
formations. The constants C;, C;, and C; are determined by the following expressions in this case:

o ah A 1 .
1 2 - h' 7\’b6(07 Z) ’
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We adopt the following as the initial condition for the given system of bodies (disk plus blades):
talr, z, 0)=<ty(x, y, O)=t,.

It is impossible to solve the stated problem in general form. Numerical methods are the most suit~
able here. In the given case the use of tlie net-point method enabled us to obtain for the stated problem a
numerical solution confirming the validity of all the basic‘considerations advanced above.

NOTATION

B1, Ba are the gas-flow entry and exit angles measured between the direction of motion of the
gas and the front of the blade cascade;

ag, ap are the thermal diffusivities of the disk and blade;

T is the time;

Ads s C4s

s Pds Pb are the thermal conductivities, specific heats, and densities of the disk and blades;

tg(x) is the stagnation temperature of the gas flow;

ty () is the temperature of the coolant air;

o(x, y) is the blade web thickness;

b is the length of the median line of the profile;

I is the length of the lower root section of the blade web, equal to half of the total blade
length;

6 s is the thickness of the blade shank;

by is the distance between the shanks of adjacent blades, measured along the outer cylindrical
surface of the disk rim;

n is the number of blades;

B is a coefficient accounting for the thermal resistance of the blade root fittings;

h is the height of the blade shank;

ki, ky, . .". , k; are constants.
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